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a b s t r a c t

Variations in structural and aerodynamic nonlinearities on the dynamic behavior of an

aeroelastic system are investigated. The aeroelastic system consists of a rigid airfoil that

is supported by nonlinear springs in the pitch and plunge directions and subjected to

nonlinear aerodynamic loads. We follow two approaches to determine the effects of

aeroelastic system on its stability near the bifurcation. The first approach is based on

implementation of intrusive polynomial chaos expansion (PCE) on the governing

equations, yielding a set of nonlinear coupled ordinary differential equations that are

numerically solved. The results show that this approach is capable of determining

sensitivity of the flutter speed to variations in the linear pitch stiffness coefficient. On

the other hand, it fails to predict changes in the type of the instability associated with

randomness in the cubic stiffness coefficient. In the second approach, the normal form is

used to investigate the flutter (Hopf bifurcation) boundary that occurs as the freestream

velocity is increased and to analytically predict the amplitude and frequency of the

ensuing LCO. The results show that this mathematical approach provides detailed

aspects of the effects of the different system nonlinearities on its dynamic behavior.

Furthermore, this approach could be effectively used to perform sensitivity analysis of

the system’s response to variations in its parameters.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainties in linear and nonlinear parameters of any aeroelastic system impact its stability and response. A common
system that has been used to investigate the aeroelastic behavior and dynamic instabilities is a two-dimensional rigid
airfoil undergoing pitch and plunge motions [1,2]. Beran et al. [3] carried out an analysis to quantify the uncertain response
of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions. Uncertainties were specified in the cubic
coefficient of the torsional spring and the initial pitch angle of the airfoil. They performed stochastic projections of the
time-domain and cyclic equations governing the airfoil response. Wu et al. [4] investigated the effect of parameter
uncertainties on the flutter characteristics of a two-dimensional airfoil in an incompressible flow through a Gegenbauer
polynomial approximation. Their results showed that the randomness of the linear component of the spring affects the
onset of flutter and the randomness of the cubic component of the spring affects the amplitude of the LCO. Millman et al.
[5] used Fourier chaos expansions (FCE) to obtain probability distributions of the amplitudes of the pitch responses due to
randomness in the initial pitch angle and the cubic stiffness coefficient of the pitch spring. They found that, unlike the
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polynomial chaos expansions (PCE), which fail to predict limit-cycle oscillations, the FCE can predict both subcritical and
supercritical responses even with low-order expansions and higher-order nonlinearities.

Combined nonlinear (geometric, inertia, free-play, damping, and/or aerodynamics) aspects that contribute to unstable
responses of any aeroelastic system could be either of the supercritical or subcritical type. In Fig. 1, we show a qualitative
sketch of the system behavior. In the supercritical instability, the system response is stable to any disturbance below the
flutter boundary. Beyond this boundary, nonlinearities yield LCO whose amplitude increases slowly with increasing flight
speed. In the subcritical type, a sudden jump to a large-amplitude LCO takes place at or below the flutter speed, depending
on the initial conditions. Uncertainties in the linear and nonlinear parameters may lower the flutter speed and lead to the
undesirable subcritical behavior even if the deterministic design or solution exhibits supercritical behavior only. These
effects are schematically illustrated by the arrows in Fig. 1. Uncertainties of the linear parameters would cause the
deterministic supercritical behavior represented by curve A to follow curve A

0

. Uncertainties in nonlinear parameters could
cause the supercritical response represented by curve A

0

to become subcritical as represented by curve A
00

. Depending on
the initial conditions, the system’s response could exhibit subcritical behavior at speeds that are much lower than the
flutter speed predicted with the deterministic approach.

To deal with these uncertainties, a common approach is to assign probabilistic distributions to certain input variables
and structural parameters and use uncertainty propagation methods (sampling approaches such as Monte Carlo
simulations (MCs) and Latin hypercube sampling (LHS) and response surface approaches, such as PCE, FCE [6,7]) to obtain
probability distributions functions (PDFs) of supercritical and subcritical responses. Following these approaches, one may
obtain a range of variations of the LCO amplitude within a type of instability [5,8], as shown in Fig. 1. Since aeroelastic
systems are usually not designed to operate beyond the flutter boundary, there is no need to quantify uncertain LCO in
those regions. Under these conditions, modern methods of nonlinear dynamics may be effectively implemented and used
to perform the analysis near the bifurcation and especially capture the switch from the supercritical to the subcritical
instability.

In this work, we assess two approaches for determining the effects of variations in the linear and nonlinear spring
coefficients of an aeroelastic system on its stability near a bifurcation point. In the first approach, we implement the
intrusive PCE in the governing equations. This expansion yields a set of coupled equations that are numerically solved. In
the second approach, we use modern methods of nonlinear dynamics to derive the normal form. A comparison of the
usefulness and effectiveness of these approaches is shown by characterizing sensitivity of the response of the system to
variations in its parameters.
2. Representation of the aeroelastic system

The aeroelastic system, considered in this work, is modeled as a rigid wing allowed to move with two degrees of
freedom as presented in Fig. 2. The wing is free to rotate about the elastic axis (pitch motion) and translate vertically
(plunge motion). Denoting by h and a the plunge deflection and pitch angle, respectively, one can write the governing
Fig. 1. Schematic of LCO response of an aeroelastic system. Arrows denote path of system response that may occur due to uncertainty in structural or

aerodynamic parameters: ð-Þ increasing, ð’Þ decreasing.
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Fig. 2. Sketch of a two-dimensional airfoil.
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equations of this system as [9,10]
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mW xab Ia
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 !
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 !
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� �
¼
�L

M

� �
(1)

where mT is the total mass of the wing and its support structure; mW is the wing mass alone; Ia is the mass moment of
inertia about the elastic axis; b is half chord length; xa ¼ rcg=b is the nondimensional distance between the center of mass
and the elastic axis; ch and ca are the plunge and pitch viscous damping coefficients, respectively; L and M are the
aerodynamic lift and moment about the elastic axis, and kh and ka are the structural stiffness for the plunge and pitch
motions, respectively. The representative parameters of this stiffness are approximated in polynomial form by

kaðaÞ ¼ ka0þka1aþka2a2þ � � �

khðhÞ ¼ kh0þkh1hþkh2h2þ � � � (2)

The aerodynamic loads are evaluated using a quasi-steady approximation with a stall model [10] and written as

L¼ rU2bcla ðaeff�csa3
eff Þ

M¼ rU2b2cma ðaeff�csa3
eff Þ (3)

where U is the freestream velocity, cla and cma are the aerodynamic lift and moment coefficients, and cs is a nonlinear
parameter associated with stall. The effective angle of attack due to the instantaneous motion of the airfoil is given by [10]

aeff ¼ aþ
_h

U
þ

1

2
�a

� �
b
_a
U

" #
(4)

where a is the nondimensional distance from the midchord to the elastic axis.
For the sake of subsequent analyses, we define the state variables

Y¼

Y1

Y2

Y3

Y4

0
BBBB@

1
CCCCA¼

h

a
_h

_a

0
BBB@

1
CCCA

and write the equations of motion in the form

_Y ¼ FðY,UÞ, (5)

where

FðY,UÞ ¼

Y3

Y4

�phðY1ÞY1�ðk1U2þpaðY2ÞÞY2�c1Y3�c2Y4þgNL1ðYÞ

�qhðY1ÞY1�ðk2U2þqaðY2ÞÞY2�c3Y3�c4Y4þgNL2ðYÞ

0
BBBB@

1
CCCCA (6)

The relations of the new variables used in Eq. (6) to the physical parameters are provided in Table 1. The original
system, Eq. (5), is then rewritten as

_Y ¼ AðUÞYþQ ðY,YÞþCðY,Y,YÞ (7)

where Q(Y,Y) and C(Y,Y,Y) are, respectively, the quadratic and cubic vector functions of the state variables collected in the
vector Y.

To determine the system’s stability, we consider the linearized governing equations, which are written in a first-order
differential form as

_Y ¼ AðUÞY (8)
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Table 1
System variables.

d¼mT Ia�m2
W x2

ab2

k1 ¼ ðIarbcla þmW xarb3cma Þ=d

k2 ¼�ðmW xarb2cla þmTrb2cma Þ=d

c1 ¼ ½IaðchþrUbcla ÞþmW xarUb3cma �=d

c2 ¼ ½IarUb2cla ð
1
2�aÞ�mW xabcla þmW xarUb4cma ð

1
2�aÞ�=d

c3 ¼ ½�mW xabðchþrUbcla Þ�mT xarUb2cma �=d

c4 ¼ ½mT ðca�rUb3cma ð
1
2�aÞÞ�mW xarUb3cla ð

1
2�aÞ�=d

paðYÞ ¼ �mW xabkaðYÞ=d

qaðYÞ ¼mT kaðYÞ=d

phðYÞ ¼ IakhðYÞ=d

qhðYÞ ¼�mW xabkhðYÞ=d

gNL1ðYÞ ¼ ðcsrU2bÞðcla IaþmW xab2cma Þa3
eff ðYÞ=d

gNL2ðYÞ ¼ �ðcsrU2b2Þðcla mW xaþmT cma Þa3
eff ðYÞ=d
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Fig. 3. Variations of (a) the real (damping) and (b) imaginary (frequency) parts of the rj with the freestream velocity U (m/s).
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where

AðUÞ ¼

0 0 1 0

0 0 0 1

�Iakh0=d �ðk1U2�mW xabka0=dÞ �c1 �c2

mW xabkh0=d �ðk2U2þmT ka0=dÞ �c3 �c4

0
BBBB@

1
CCCCA (9)

The 4�4 matrix A(U) has a set of four eigenvalues, frj, j¼ 1,2, . . . ,4g. These eigenvalues determine the stability of the trivial
solution of Eq. (8). If the real parts of all of the rj are negative, the trivial solution is asymptotically stable. On the other
hand, if the real part of one or more eigenvalues are positive, the trivial solution is unstable. The flutter speed Uf, for which
one or more eigenvalues have zero real parts, corresponds to the onset of linear instability. For the specific values given in
Strganac et al. [10], Figs. 3(a) and (b) show, respectively, variations of the real and imaginary parts of the rj with U. It is
noted that two of the eigenvalues transversally cross the imaginary axis at Uf=9.1242 m/s. At this speed, the aeroelastic
system undergoes a Hopf bifurcation as indicated by the oscillatory solution ðImðrÞa0Þ. The observed coalescence of the
two aeroelastic modal frequencies is indicative of classical flutter.

3. Uncertainty quantification via intrusive polynomial chaos

In this section, we implement the intrusive formulation of the polynomial chaos expansion (PCE) to quantify
uncertainty in the flutter speed and the LCO of the aeroelastic system described above due to imprecision in the pitch
stiffness. This formulation involves substitution of uncertain variables and parameters in the governing equations with
polynomial expansions. The unknowns polynomial coefficients are then evaluated by projecting the resulting equations
onto basis functions. Thus, the governing equations are reformulated to yield mode strengths [11] of the output.

We consider variations in the linear and cubic pitch stiffness coefficients ka0 and ka2 described by Gaussian distributions
and expressed in the following standard forms:

ka0 ¼ ka0þs1x1 (10)

ka2 ¼ ka2þs2x2 (11)
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The effects of randomness in these parameters on the speed at flutter onset of the airfoil and ensuing LCO amplitudes are
determined by numerically integrating the set of governing equations. In general, the linear and cubic stiffness coefficients
may not vary independently. Yet, the flutter speed would only be impacted by the variations in the linear coefficient. On
the other hand, the LCO amplitude would be impacted by variations in both coefficients. These effects will be made clear
from the normal form derivation presented in Section 4. For physical evaluation of the randomness effects of each
parameter, we treat them separately.

3.1. Effect of randomness of ka0 on the flutter speed

In implementing the intrusive approach, the plunge displacement h and pitch angle a are considered as stochastic
processes that are functions of the uncertain parameters. Their PCEs are then written as

hðt,x1Þ ¼
XP

i ¼ 0

hiðtÞCiðx1Þ

aðt,x1Þ ¼
XP

i ¼ 0

aiðtÞCiðx1Þ (12)

where Pþ1¼ ðnþpÞ!=n!p! is the number of output modes, which is a function of the order of the polynomial chaos p and
the number of random dimensions n. Here, the hi(t) and aiðtÞ are the deterministic components, the amplitudes of the
plunge and pitch fluctuation, respectively, and Ciðx1Þ is the random basis function corresponding to the i th mode. Many
choices are possible for the basis functions, depending on the type of the probability distribution selected for the
uncertainty of the random variable vector x1 [12]. For variables with Gaussian probability distributions, Hermite
polynomials are used because they form an orthogonal set of basis functions [13]. Taking p=1 (i.e., keep only the linear
terms) and substituting Eqs. (10) and (12) into Eq. (8), we have

_Y ¼

0 0 1 0

0 0 0 1

�Iakh0=d �ðk1U2�mW xabðka0þs1x1Þ=dÞ �c1 �c2

mW xabkh0=d �ðk2U2þmT ðka0þs1x1Þ=dÞ �c3 �c4

0
BBBB@

1
CCCCAY (13)

where

Y¼

h0ðtÞþh1ðtÞx1

a0ðtÞþa1ðtÞx1

_h0ðtÞþ _h1ðtÞx1

_a0ðtÞþ _a1ðtÞx1

0
BBBB@

1
CCCCA

Multiplying both sides of Eq. (13) by Ciðx1Þ, i=0,1 in sequence, using the orthogonality of the basis functions (Hermite
polynomials), and taking the inner product with respect to the random variable, we obtain

_Y s ¼ AsðUÞYs (14)

where

Ys ¼ ðh0 a0
_h0 _a0 h1 a1

_h1 _a1Þ
T

AsðUÞ ¼
AðUÞ Dðs1Þ

Dðs1Þ AðUÞ

 !
(15)

and

Dðs1Þ ¼

0 0 0 0

0 0 0 0

0 mW xabs1=d 0 0

0 �mTs1=d 0 0

0
BBBB@

1
CCCCA (16)

The matrix As(U) has a set of eigenvalues, frj,j¼ 1,2, . . . ,8g, which determine the stability of the system given by Eq. (14).
It is well-known that if the real parts of all rj are negative, then the obtained solution is asymptotically stable. On the other
hand, if one or more real parts of rj are greater than zero, the solution is unstable. The flutter onset speed Uf is reached
when one or more eigenvalues cross the imaginary axis into the right-half of the complex plane.

Fig. 4 shows variation of the real parts of the rj with the freestream velocity U. It shows the ranges of the onset flutter
speed of the stochastic airfoil system for different values of s1. Fig. 5 depicts variations of the upper Ufu and lower Ufl

bounds of the flutter speed with s1 using both exact and PCE solutions. Clearly, as s1 increases, there is a slight departure
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from linear variations. However, a comparison between the exact flutter speeds and corresponding ones obtained from
PCE-based analysis shows that the first-order intrusive PCE produces coefficients that accurately yield the sensitivity of the
flutter speed to variations in the structural stiffness.
3.2. Effect of randomness of ka2 on LCO

In this case, the full nonlinear system is considered. For the sake of simplicity, we consider the case in which structural
nonlinearity is applied only in the pitch degree of freedom; that is, kh1=0, kh2=0, cs=0, ka1 ¼ 39:996 N m, and
ka2 ¼ 67:685 N m. These values were selected to obtain a configuration that yields a supercritical instability. We consider
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ka2 as a random variable and ka0 as deterministic (i.e., s1 ¼ 0). Here, h and a are approximated by the following PCEs in
terms of x2:

hðt,x2Þ ¼
XP

i ¼ 0

hiðtÞCiðx2Þ

aðt,x2Þ ¼
XP

i ¼ 0

aiðtÞCiðx2Þ (17)

The intrusive approach relies on a Galerkin-projection reformulation of the original model equations to arrive at governing
equations for the strengths of PC modes of the model output. The governing equations are rewritten by substituting
Eqs. (11) and (17) into Eq. (5); the result is

XP

i ¼ 0

€hiðtÞCiðx2Þ ¼�ðIakh0=dÞ
XP

i ¼ 0

hiðtÞCiðx2Þ� k1U2�mW xab ka0þka1

XP

i ¼ 0

aiðtÞCiðx2Þ

 "

þðka2þs2x2Þ
XN

i ¼ 0

aiðtÞCiðx2Þ

 !2
1
A�d

3
5XP

i ¼ 0

aiðtÞCiðx2Þ�c1

XP

i ¼ 0

_hiðtÞCiðx2Þ�c2

XP

i ¼ 0

_a iðtÞCiðx2Þ (18)

XP

i ¼ 0

€a iðtÞCiðx2Þ ¼ ðmW xabkh0=dÞ
XP

i ¼ 0

hiðtÞCiðx2Þ� k2U2þmT ka0þka1

XP

i ¼ 0

aiðtÞCiðx2Þ

 "

þðka2þs2x2Þ
XP

i ¼ 0

aiðtÞCiðx2Þ

 !2
1
A�d

3
5XP

i ¼ 0

aiðtÞCiðx2Þ�c3

XP

i ¼ 0

_hiðtÞCiðx2Þ�c4

XP

i ¼ 0

_a iðtÞCiðx2Þ (19)

Using the orthogonality of the basis functions (Hermite polynomials) and projecting Eqs. (18) and (19) onto the Clðx2Þ

yields the following stochastic version of the aeroelastic model:

€hlðtÞ ¼�ðIakh0=dÞhlðtÞ�ðk1U2�mW xabka0=dÞalðtÞ�c1
_hlðtÞ�c2 _a lðtÞþðmW xabka1=dÞ

XP

i ¼ 0

XP

j ¼ 0

zijlaiðtÞajðtÞ

þðmW xab=dÞ
XP

i ¼ 0

XP

j ¼ 0

XP

k ¼ 0

aiðtÞajðtÞakðtÞðka2Bijklþs2tijklÞ

0
@

1
A (20)

€a lðtÞ ¼ ðmW xabkh0=dÞhlðtÞ�ðk2U2þmT=dÞalðtÞ�c3
_hlðtÞ�c4 _a lðtÞ�ðmT ka1=dÞ

XP

i ¼ 0

XP

j ¼ 0

zijlaiðtÞajðtÞ

�ðmT=dÞ
XP

i ¼ 0

XP

j ¼ 0

XP

k ¼ 0

aiðtÞajðtÞakðtÞðka2Bijklþs2tijklÞ

0
@

1
A (21)

where

zijl ¼/Ciðx2ÞCjðx2Þ,Clðx2ÞS, Bijkl ¼/Ciðx2ÞCjðx2ÞCkðx2Þ,Clðx2ÞS

tijkl ¼/Ciðx2ÞCjðx2ÞCkðx2Þx2,Clðx2ÞS (22)

and /,S denotes the inner product with the standard Gaussian distribution as a weighting function.
The PCE coefficients hl(t) and alðtÞ (l=0,1,y,P) can be then determined by numerical integration of the obtained set of

nonlinear coupled ordinary-differential equations. The PCE coefficients directly yield estimates of the mean value and the
variance. Furthermore, the first-order terms in these coefficients provide a measure of the sensitivity of the stochastic
response to each of the uncertain parameters.

We consider a first-order PCE (i.e, p=1) and plot in Fig. 6 the time histories of the pitch motion obtained from the
deterministic model as well as from the stochastic one at U=9.8 m/s for different variations of the uncertain parameter ka2.
By integrating the dynamical system given by Eqs. (20) and (21), we observe that the LCO response diverges from the
physical limit cycle (obtained from the deterministic model) to a spurious limit cycle. We also note that the solution would
still drift to a nonphysical limit cycle even if the order of the PCE is increased. This is due to the global nature of the basis
functions in the PCE [5,14]. As a matter of fact, Pettit and Beran [14] showed that PCE based on non-global basis functions
could capture limit cycles of nonlinear aeroelastic systems. In Fig. 6(b), a large variation of ka2 is considered ðx2 ¼ 5Þ to
check if the PCE is capable of capturing the switch from the supercritical instability to the subcritical one as would be
detected using the normal form (see next section). It can be clearly seen that even for short-time integration, the PCE fails
to predict the LCO for large variations of the uncertain cubic coefficient ka2 of the pitch stiffness. Moreover, it cannot
predict changes in the type of the instability. The intrusive formulation of the PCE shows weaknesses and lack of
robustness in the modeling of stochastic oscillating aeroelastic systems characteristics.
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Fig. 6. Time histories of the pitch motion. The solid line represents the time history obtained by integrating numerically the deterministic model. The

dashed line is from the stochastic model based on the first-order PCE. (a) x2 ¼ 1 and s2 ¼ 0:1ka2 and (b) x2 ¼ 5 and s2 ¼ 0:1ka2.
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4. Uncertainty quantification via normal form of Hopf bifurcation

In this section, we follow a second approach, namely the normal form, to determine stochastic aspects of the response
of aeroelastic systems as caused by variations in the system’s parameters. To compute the normal form of the Hopf
bifurcation of Eq. (7) near U=Uf, we follow Nayfeh and Balachandran [15] and introduce a small nondimensional parameter
e as a bookkeeping parameter and seek a third-order approximate solution of Eq. (7) in the form:

YðtÞ ¼ eY1ðT0,T2Þþe2Y2ðT0,T2Þþe3Y3ðT0,T2Þþ � � � (23)

where the time scales Tm ¼ emt. As shown below, the secular terms, arising from the nonlinear terms, appear at the third
order and hence would have no dependence on the time scale T1. Moreover, we set U ¼Uf þe2sUUf , ka0 ¼ ka0þe2saka0, and
kh0 ¼ kh0þe2shkh0. These detunings are assumed to be of order Oðe2Þ, again because the secular terms appear at order Oðe3Þ.

The time derivative is expressed in terms of these scales as

d

dt
¼D0þe2D2þ � � � (24)

where Dm ¼ q=qTm. Substituting Eqs. (23) and (24) into Eq. (7) and equating coefficients of like powers of e, we obtain

Order ðeÞ:

D0Y1�AðUf ÞY1 ¼ 0 (25)

Order ðe2Þ:

D0Y2�AðUf ÞY2 ¼Q ðY1,Y1Þ (26)

Order ðe3Þ:

D0Y3�AðUf ÞY3 ¼�D2Y1þsUB1Y1þshB2Y1þsaB3Y1þ2Q ðY1,Y2ÞþCðY1,Y1,Y1Þ (27)

where

B1 ¼�2U2
f ðk1I1þk2I2Þ, B2 ¼�

Ia
d

I1þ
mW bxa

d
I2,

B3 ¼
mW bxa

d
I1�

mT

d
I2, I1 ¼

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0
BBB@

1
CCCA, I2 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0
BBB@

1
CCCA (28)

The general solution of Eq. (25) is the superposition of four linearly independent solutions corresponding to the four
eigenvalues: two of these eigenvalues have negative real parts and the other two are purely imaginary ð7 ioÞ. Because the
two solutions corresponding to the two eigenvalues with negative real parts decay as T0-1, we retain only the
nondecaying solutions and express the general solution of the first-order problem as

Y1ðT0,T2Þ ¼ ZðT2ÞpeioT0þZðT2Þpe�ioT0 (29)
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where ZðT2Þ is determined by imposing the solvability condition [16] at the third-order level and p is the eigenvector of
A(Uf) corresponding to the eigenvalue io; that is,

AðUf Þp¼ iop (30)

Substituting Eq. (29) into Eq. (26) yields

D0Y2�AðUf ÞY2 ¼ Q ðp,pÞZ2e2ioT0þ2Q ðp,pÞZZþQ ðp,pÞZ2e�2ioT0 (31)

The solution of Eq. (31) can be written as

Y2 ¼ z2Z2e2ioT0þ2z0ZZþz2Z2e�2ioT0 (32)

where

½2ioI�AðUf Þ�z2 ¼Q ðp,pÞ and AðUf Þz0 ¼�Q ðp,pÞ (33)

Substituting Eqs. (29) and (32) into Eq. (27), we obtain

D0Y3�AðUf ÞY3 ¼�½D2Zp�sUB1Zp�shB2Zp�saB3Zp�ð4Q ðp,z0Þþ2Q ðp,z2Þ�3Cðp,p,pÞÞZ2Z�eioT0þccþNST (34)

where cc stands for the complex conjugate of the preceding terms and NST stands for terms that do not produce secular
terms. We note that the homogeneous part of Eq. (34) is the same as Eq. (25) and that the latter has nontrivial solutions.
Therefore, the nonhomogeneous Eq. (34) has a solution only if a solvability condition is satisfied. To determine this
solvability condition, we define q as the left eigenvector of A(Uf) corresponding to the eigenvalue io; that is,

AðUf Þ
T q¼ ioq

and normalize it so that qTp=1. Then, the solvability condition requires that terms proportional to eioT0 in Eq. (34) be
orthogonal to q. Imposing this condition, we obtain the following complex-valued normal form of the Hopf bifurcation:

D2Z¼ ½ð0:434þ0:324iÞsUUf�ð4:135�1:502iÞshkh0þð2:398þ4:011iÞsaka0�Zþ½ð0:559þ0:936iÞ

� 10�2ka2�ð0:725þ1:192iÞ � 10�3k2
a1�ð0:830þ1:389iÞ � 10�3kh1ka1�ð2:199�0:798iÞ

� 10�7kh2�ð1:045�0:380iÞ � 10�7k2
h1�ð0:078þ0:137iÞcs�Z2Z (35)

The effects of all nonlinearities, including the higher-order spring coefficients (kh1, kh2, ka1, and ka2) and aerodynamic
parameter cs, are explicitly expressed through the last six terms of this normal form. For convenience, we write Eq. (35) as

D2Z¼ bZþLZ2Z (36)

where

ReðbÞ ¼ br ¼ 0:434sUUf�4:135shkh0þ2:398saka0

ImðbÞ ¼ bi ¼ 0:324sUUf þ1:502shkh0þ4:011saka0

ReðLÞ ¼Lr ¼ 0:559� 10�2ka2�0:725� 10�3k2
a1�0:830� 10�3kh1ka1�2:199� 10�7kh2�1:045� 10�7k2

h1�0:078cs

ImðLÞ ¼Li ¼ 0:936� 10�2ka2�0:119� 10�2k2
a1�0:138� 10�2kh1ka1�0:798� 10�7kh2�0:380

� 10�7k2
h1�0:137cs (37)

and Re and Im stand for the real and imaginary parts, respectively.
Letting Z¼ 1

2 rexpðiyÞ and separating the real and imaginary parts in Eq. (36), we obtain the following alternate real-
valued normal form of the Hopf bifurcation:

_r ¼ brrþ
1
4Lrr3 (38)

_y ¼ biþ
1
4Lir

2 (39)

where r is the amplitude and _y is the shift in the frequency of the periodic solution that is created due to Hopf bifurcation.
We note that, because the r component is independent of y, the problem is reduced to studying the stability of the fixed
points of the one-dimensional system (38). Assuming that Lra0, Eq. (38) admits three equilibrium solutions, namely

r¼ 0, r¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffi
�4br

Lr

s
(40)

The trivial fixed point of Eq. (38) corresponds to the fixed point (0,0) of Eq. (7), and a nontrivial fixed point (i.e, ra0) of
Eq. (38) corresponds to a periodic solution of Eq. (7). The origin is asymptotically stable for br o0, unstable for br 40, unstable
for br ¼ 0 and Lr 40, and asymptotically stable for br ¼ 0 and Lr o0. On the other hand, the nontrivial fixed points exist
when �brLr 40. They are stable for br 40 and Lr o0 (supercritical Hopf bifurcation) and unstable for br o0 and Lr 40
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(subcritical Hopf bifurcation). We note that a stable nontrivial fixed point of Eq. (38) corresponds to a stable periodic solution
of Eq. (7). Likewise, an unstable nontrivial fixed point of Eq. (38) corresponds to an unstable periodic solution of Eq. (7).

4.1. Case study

In order to check the accuracy of the analytical formulation given by the normal form in predicting the amplitude of
LCO, we consider the case in which structural nonlinearity is applied only in the pitch degree of freedom; that is, kh1=0,
kh2=0, cs=0, ka1 ¼ 29:996 N m, and ka2 ¼ 67:685 N m. This configuration corresponds to a supercritical instability ðLr o0Þ.
To determine the amplitude of LCO associated with the pitch and plunge motions from the normal form, we consider the
first-order solution given by Eq. (29). The amplitude of plunge and pitch LCO, Ah and Aa, respectively, are given by

Ah ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p12

r þp12
i

q

Aa ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p22

r þp22
i

q
(41)

where pjr and pji denote the real and imaginary part of the j th component of the vector p, respectively. In Figs. 7(a) and (b),
we plot the LCO amplitudes for both pitch and plunge motions obtained by integrating the original system and those
predicted from the normal form. The results show a good agreement in the amplitudes of LCO near the bifurcation.

To see the effect of the linear and nonlinear parameters on the system’s behavior, we vary ka0 by 10 percent, ka1 and ka2

by 20 percent and plot in Fig. 8 variations of the LCO amplitudes with the freestream velocity for the two configurations.
Clearly, the effect of combined uncertainties in the linear and nonlinear parameters may cause the flutter to occur at
speeds that are much lower than the flutter speed predicted by the linear model. Furthermore, they can cause a switch
from a supercritical instability to a subcritical one.

4.2. Sensitivity analysis

The effects of the structural stiffness and aerodynamic nonlinearity on the system behavior can be determined from the
normal form. In fact, by setting br equal to zero, we can easily assess sensitivity of the flutter speed to variations in the
structural pitch and plunge stiffness. For the specific values of the airfoil geometry [10], we observe that
1.
 Variations in ka0 and kh0 have opposite effects on the flutter speed as determined from the signs in Eq. (37).

2.
 The effect of variations of kh0 is twice that of ka0 as determined from the slopes in Figs. 9(a) and (b).

3.
 The perturbation analysis is valid for small fluctuations of kh 0 and ka0 around their mean values, (see Figs. 9(a) and (b)).

As shown in Eq. (37), the different nonlinearities may be favorable or unfavorable. For example, for the specific values of
the system parameters [10], we conclude that
1.
 In absence of the plunge stiffness nonlinearity, the pitch stiffness nonlinearity, even in the presence of the aerodynamic
nonlinearity, may lead to large-amplitude LCO when transitioning through the Hopf bifurcation and also induce LCO even
below the nominal flutter velocity if the disturbances to the system are sufficiently large (subcritical Hopf bifurcation).
9 9.05 9.1 9.15 9.2 9.25 9.3 9.35
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

U (m/s)

h

9 9.05 9.1 9.15 9.2 9.25 9.3 9.35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

U (m/s)

�

Fig. 7. LCO amplitudes of plunge and pitch motions: -, analytical prediction, �, numerical integration. (a) Plunge motion and (b) pitch motion.
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2.
 The nonlinearity in the plunge stiffness (i.e., kh1a0 and kh2a0) is favorable in the sense that it inhibits the occurrence of
LCO below the flutter boundary and limits the exponentially growing oscillations predicted by the linear model to a
periodic response whose amplitude increases slowly with increasing freestream velocity (supercritical Hopf
bifurcation).
3.
 Variations in the different system parameters, such as linear and nonlinear stiffness, can lead to a subcritical instability
even if the deterministic problem does not exhibit that behavior.
These observations are based on the assumptions that all springs are of the hardening type. For softening springs, the
analysis would yield other responses.

To gain more insight into the combined effect of the cubic and quadratic pitch stiffness coefficients ka1 and ka2 on
the type of instability, we generate a contour plot showing variations of Lr with ka1 and ka2 (see Fig. 10). We note that only
the pitch stiffness nonlinearity is considered; that is, kh1=0, kh2=0, cs=0. This plot reveals the effect of the pitch stiffness
nonlinearity on the type of instability as well as the amplitude of LCO using Eqs. (40) and (41).
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Fig. 10. Variation of Lr with ka1 and ka2: effect of the pitch stiffness nonlinearity on the type of instability.
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5. Conclusions

In this work, we follow two approaches to determine the effects of variations in the linear and nonlinear plunge and
pitch stiffness coefficients of an aeroelastic system on its stability near the bifurcation. The first approach is based on
implementing the intrusive PCE on the governing equations, yielding a set of nonlinear coupled ordinary-differential
equations that are numerically solved. The results show that this technique is capable of determining sensitivity of the
flutter speed to variations in the linear pitch stiffness coefficient. On the other hand, it fails to predict changes in the type of
the instability associated with randomness in the cubic stiffness coefficient. The second approach is based on using the
normal form to characterize the dynamic instability. Furthermore, the results show that this form can be used to effectively
perform sensitivity analysis of the system’s response to variations in its parameters.

Although the normal form here has been derived for a low-order system, A.H. Nayfeh [17] presents details on its
implementation in higher-dimensional problems. Alternatively, one may apply the normal form to derived phenomen-
ological or physical-based reduced-order models that accurately describe the phenomenon of interest as identified from
higher-order representations [18–20]. These models are derived by exploiting a specific phenomenon [21], modeling the
nonlinear responses [22], or determining the form of parameters to be identified [23].
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